Theorie der kondensierten Materie

 

Veranstaltungstermine des Seminars der Theorie der kondensierten Materie werden über eine Mailingliste verkündet. Jeder Interessent kann sich in die Mailingsliste eintragen.

Über diese Listen werden manchmal auch Seminare angekündigt, die nicht in diese Rubik fallen. Interessenten für alle drei Festkörperphysik-Seminare sollten sich auf dieser Mailingliste anmelden. 

Dienstag 8.12.2015, 16:00 Uhr, seminarraum 26C401

Hierarchical quantum master equations and driven long-term impurity dynamics

Rainer Härtle (Universität Göttingen)

 

The hierarchical quantum master equation technique is a promising method to solve nonequilibrium impurity problems. It employs a hybridization expansion of the time evolution operator that is time-local. The numerical effort to evaluate the corresponding equations of motion scales linearly with the simulation time. A systematic truncation scheme reduces the numerical effort to a practical level such that convergence can be achieved if the temperature of the environment is not too low. Thus, numerically exact results can be obtained, which I will corroborate by a direct comparison with the continuous-time quantum Monte Carlo approach. As an example, I will discuss the nonequilibrium dynamics of interacting quantum dot systems. To highlight the strength of the method, I will focus on effects and phenomena that emerge on long time scales such as, for example, the steady-state magnetization or the slow build-up of nonequilibrium coherences.

 

Dienstag 17.11.2015, 16:00 Uhr, Seminarraum 26 C 401

Classical and quantum anisotropic Heisenberg antiferromagnets

Prof. Walter Selke

 

XXZ antiferromagnetic Heisenberg models, with and without single-ion anisotropy term, in a magnetic field are studied for spin values 1/2 and 1 as well as in the classical limit for one-, two- and three-dimensional lattices, using, mainly, Monte Carlo and density matrix renormalization group techniques. The model displays interesting structures, such as spin-flop and biconical ("supersolid") phases as well as various multicritical phenomena, like critical end-points, bi- and tetracritical points. Coauthors include Martin Holtschneider, Ian P. McCulloch, David Peters, and Stefan Weßel.