Introduction to the Master’s Program in Physics
April 3, 2020

• Find this document at www.physik.rwth-aachen.de/studienberatung

• For Presentations of the different tracks (focus of study) please look at the presentations from last year:

 o **Experimental Particle Physics** (T. Hebbeker)
 o **Astroparticle Physics** (C. Wiebusch)
 o **Quantum Field Theory and Gauge Theories** (M. Czakon)
 o **Experimental Condensed Matter Physics** (H. Bluhm)
 o Nanoelectronics (H. Bluhm)
 o **Quantum Technology** (H. Bluhm)
 o **Condensed Matter Theory** (R. Mazzarello)

• Organisational informations about the course of study

Stefan Roth, Studienberater Physik
studienberater@physik.rwth-aachen.de
How do I get a Master’s Degree?

Five requirements:

1. Successful passing of all compulsory modules of one focus of studies
 ➢ Compulsory modules are listed in the curriculum
 ➢ See next slide

2. At minimum 60 Credits from modules assigned to the first year of studies
 Freely selectable from
 ➢ Specialisation courses of the chosen focus of studies
 ➢ Compulsory or specialisation courses of the other focuses of study
 ➢ Subsidiary Modules

3. Passing of Master’s Seminar und Master’s Practical
 • Introduction into Master’s thesis at one of the institutes
 • Master’s Seminar: Acquire in-depth scientific knowledge in the chosen thesis subject
 • Master’s Practical: Get acquainted with the scientific methods of the chosen field

4. Master’s Thesis

5. Master’s Defence Colloquium
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Credits</th>
<th>Particles Physics</th>
<th>Astroparticle Physics</th>
<th>Quantum Field Theory and Gauge Theories</th>
<th>Condensed Matter Physics</th>
<th>Quantum Technology</th>
<th>Condensed Matter Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Sem.</td>
<td>Particle Physics I</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quantum Field Theory of Particle Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Theory of Relativity and Cosmology</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Condensed Matter Physics I</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Theoretical Solid State Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quantum Theory of Condensed Matter I</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Novel Materials and Devices for Information Technology 1</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Hardware Platforms for Quantum Technology</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Elective Courses (from above or specialization or subsidiary courses)</td>
<td>30</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2nd Sem.</td>
<td>Particle Physics II</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quantum Field Theory of Particle Physics II</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Astroparticle Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Laboratory Course Particle Physics</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Condensed Matter Physics II</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Laboratory Course Solid State Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Laboratory Course Nanoelectronics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Laboratory Course Quantum Technology</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quantum Theory of Condensed Matter II</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Computational Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quantum Information</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Statistical Physics</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Novel Materials and Devices for Information Technology 2</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>October</td>
<td>Elective Courses (from above or specialization or subsidiary courses)</td>
<td>30</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3rd Sem.</td>
<td>Master’s Seminar</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Master’s Practical</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4th Sem.</td>
<td>Master’s Thesis</td>
<td>25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Master’s Defence Colloquium</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Information on courses in RWTHonline

Focus of Studies

- [2013] Physik
 - Focus of Studies
 - Experimental Particle Physics
 - Astroparticle Physics and Cosmology
 - Quantum Field Theory and Gauge Theories
 - Experimental Condensed Matter Physics
 - Nanoelectronics
 - Quantum Technology
 - Condensed Matter Theory

Elective Courses

- Elective Courses
 - Focus of Studies
 - Experimental Particle Physics
 - Astroparticle Physics and Cosmology
 - Quantum Field Theory and Gauge Theories
 - Experimental Condensed Matter Physics
 - Nanoelectronics
 - Condensed Matter Theory
 - Specialisation Courses
 - Experimental Particle Physics
 - Astroparticle Physics and Cosmology
 - Quantum Field Theory and Gauge Theories
 - Experimental Condensed Matter Physics
 - Nanoelectronics
 - Subsidiary Subjects
Which Courses should I choose?

Masterprüfungsordnung (Examination Regulation of the Master’s program) offers a lot of flexibility.

How do I use this flexibility reasonably?

1. Decide for a focus of study
2. Attend the compulsory courses of the chosen focus of study
3. Choose from the offered specialisation courses
4. Complement by subsidiary subjects

What should you avoid?

• Don’t dissipate on very diverse courses, but set your focus according to your interests!
• Choose your subsidiary courses only from one (at most two) subsidiary subjects!

You can decide in large part on the curriculum of your Master’s program

Due to your choice of courses you are self-responsible for a reasonably and meaningful Master’s Certificate!
Questions?

Please ask!